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INITIALIZATION BY COMPATIBLE BALANCING 

Michael G h i l  

Abstract 

The i n i t i a l i za t ion  problem i s  defined as the problem of obtaining 

the i n i t i a l  data tha t  are  required i n  order t o  solve a well-posed i n i t i a l -  

and-boundary value problem fo r  the equations of large-scale dynamical 

meteorology. 

formation is  available a t  a given instant on the atmospheric temperature 

and surface-pressure f i e l d s ,  as well a s  on t h e i r  time derivatives;  we 

study a procedure fo r  computing the horizontal velocity f i e l d  a t  the i n -  

s tan t  of i n t e re s t  based on the assumed information. 

In  our treatment o f  the problem we assume tha t  complete i n -  

This procedure r e l i e s  on the exact mathematical treatment of  the 

d i f fe ren t ia l  equations of  atmospheric motion, ra ther  t h a n  on perturbation- 

type o r  numerical methods; therefore the i n i t i a l  s t a t e  given by the known 

temperature f i e ld  and the derived velocity f i e l d  should be f u l l y  compatible 

w i t h  the equations describing the time evolution of the system and n o t  give 

r i s e  t o  spurious noise components of the motion. 

I n  the case of an atmospheric model governed b y  t h 2  linearized shallow- 

f luid equations, the diagnostic equations obta ined  by our procedure for the: 

wind f i e l d  are of uniformly e l l i p t i c  type and an  error  analysis re la t ing the 

accuracy of the resu l t s  t o  tha t  of the data i s  possible. 

model described by the fu l l  non-linear shallow-fluid equations, the diagnostic 

In the case o f  a 

equations we obtain f o r  the wind f i e l d  are  of mixed type and related t o  the 



c l a s s i c a l  balance equation; t he  e l l i p t i c i t y  c o n d i t i o n  we de r i ve  f o r  the  former 

i s  s i m i l a r  t o  t h e  well-known e l l i p t i c i t y  c o n d i t i o n  f o r  t he  l a t t e r .  

f ea tu re  o f  t h i s  cond i t ion  i s  t h a t  i t  does n o t  depend on the  p a r t i a l  d e r i v a t i v e s  

o f  t he  ho r i zon ta l  v e l o c i t y  components. F i c a l l y ,  i n  the  case o f  2 p r i m i t i v e -  

equat ion model our  d iagnos t ic  equat ions f o r  the ho r i zon ta l  v e l o c i t y  f i e l d  a re  

s i m i l a r  t o  those f o r  t he  non- l inear  s h a l l o w - f l u i d  model , though somewhat more 

complicated. 

The impor tant  

The i r  type i s  discussed, and a general cond i t i on  t o  determine 

e l  1 i p t i c i  

t o  a simp 

The 

y i s  given. 

e form, independent o f  v e l o c i t y  de r i va t i ves ,  as i n  the  previous case. 

This  c o n d i t i o n  does n o t  appear t o  be so e a s i l y  reduced 
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1. I n t r o d u c t i o n  

One of t he  main d i f f i c u l t i e s  i n  improving shor t - term weather fore- 

cas t i ng  based on numerical i n t e g r a t i o n  o f  t h e  p r i m i t i v e  equations' i s  

the  l a c k  o f  i n i t i a l  data.  

nates, say, form a hyperbol ic  system o f  f i r s t - o r d e r  p a r t i a l  d i f f e r e n t i a l  

equations (PDEs), and weather p r e d i c t i o n  invo lves  so l v ing  numer ica l l y  an 

in i t ia l -and-boundary  value problem f o r  these equations. We s h a l l  n o t  d iscuss 

here the boundary cond i t ions  t o  be imposed a t  t h e  upper and a t  t he  lower 

The p r i m i t i v e  equat ions i n  Car tes ian coord i -  

boundary o f  the  atmosphere. The requ i red  i n i t i a l  data a t  a given t ime 

t = to, t o  be s p e c i f i e d  throughout the  g loba l  atmosphere, a re  the  h o r i -  

zon ta l  v e l o c i t y  components u, v, the  dens i t y  p and the  temperature T. 

The complete and s u f f i c i e n t l y  accurate s p e c i f i c a t i o n  o f  such i n i t i a l  

data c o n s t i t u t e s  the  i n i t i a l i z a t i o n  problem. 

Thus the  i n i t i a l i z a t i o n  problem n a t u r a l l y  f a l l s  i n t o  two pa r t s :  

( i )  t he  completeness, and ( i i )  t he  accuracy o f  t he  i n i t i a l  data.  I n  

d iscuss ing the  d i f f e r e n t  aspects o f  t h i s  problem, we s h a l l  t r y  t o  d i s -  

t i n g u i s h  between (a )  t he  physical  behavior o f  t h e  atmosphere, ( b )  the  mathe- 

mat ica l  ( d i f f e r e n t i a l  ) models desc r ib ing  t h i s  behavior,  and ( c )  the  numerical  

( d i f f e r e n c e )  models used t o  approximate a g iven mathematical model. 

The quest ion o f  accuracy o f  the  i n i t i a l  data i s  p a r t i c u l a r l y  c r i t i c a l  

because o f  the  extreme s e n s i t i v i t y  o f  p resen t l y  a v a i l a b l e  numerical models 

t o  changes i n  i n i t i a l  data. I n  o the r  words, small r e l a t i v e  e r r o r s  i n  the  

i n i t i a l  data r e s u l t  w i t h i n  a few hours o f  s imulated t ime i n  l a r g e  r e l a t i v e  

e r r o r s  i n  the  s o l u t i o n  (Charney e t  a l . ,  1966). 

themselves main ly  i n  a form i d e n t i f i e d  as t h e  numerical counterpar t  o f  

These e r r o r s  mani fest  

f as t  i n e r t i a - g r a v i t y  waves (Hinkelmann, i951, Charney, 19553. 

'For s i m p l i c i t y  we s h a l l  c a l l  p r i m i t i v e  equat ions the  Eu ler  equations o f  
f l u i d  dynamics, w i t h  t h e  v e r t i c a l  momentum equat ion rep laced by the 
hyd ros ta t i c  assumption, and w i t h  the  energy equat ion i n  i t s  i s e n t r o p i c  
form. 



In the atmosphere inertia-gravi ty waves ( IGWS) are present only 

with small amplitudes, because of the mechanism of geostrophic adjust- 

ment; this adjustment results in a so-called balanced state, in which 

slow, meteorologically significant, motions are predominant. 

it was thought that a balanced numerical solution with smaller IGW-like 

errors could be produced by requiring the initial data to satisfy a time- 

independent compatibility condition approximately expressing the property 

of balance. Thus the idea of a time evolution free of large inertia- 

gravity waves was tied to that of an instantaneous relation, containing 

no time-derivatives, between wind field and mass field; this relation was 

called the balance equation. 

Therefore, 

A number of forms of this balance equation (Ellsaesser, 1968, Haltiner, 1971, . * 
pp. 60-61) have been formulated and used in the initialization of primitive-equation 

models. 

ated growth of IGW-like components of the solution i n  the numerical inte- 

gration of these models (Nitta and Hovermale, 1969, Morel et al., 1971). 

The mathematical reason for this is the fact that all these forms of the 

balance equation involve in their derivation from the equations o f  motion 

the neglecting’afcertain terms; therefore such a balance equation is con- 

sistent with the equations of motion only in an approximate, asymptotic 

sense, rather than in an exact one. 

- 
Their use did not prevent, however, the appearance and exagger- 

As synoptic balancing did not seem to be successful with primitive- 

equation models, a form of dynamical balancing was proposed by Nitta and 

Hovermale (1969); the basic idea was to reduce the amplitude of spurious 

IGW-like phenomena in the model by using the dispersive and dissipative 

properties of the model itself, i.e., let the model simulate the geostro- 

phic adjustment process in the atmosphere. 

ward by Charney et al. (1969) for using the time-dependent model to solve 

the completeness-of-data question. 
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A related idea was put for- 
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Indeed, no observational system i n  use a t  present can supply a t  a 

given time (synoptically) a l l  o f  u ,  v ,  p, T over a uniform g r i d ,  l i ke  the 

ones used i n  general circulation models (GCMs). However, i t  seems reason- 

able t o  expect through the use of s a t e l l i t e  technology be t te r  data 

coverage for  temperature than fo r  winds. The  suggestion then,following 

some ideas already found in  Smagorinsky and Miyakoda (1969), was to  use 

the history of the temperature f i e l d  T and tha t  of the surface-pressure 

f i e l d  p, from t=to to  t=tl i n  order t o  infer  the horizontal wind  f ield 

( u ,  v )  a t  t=tl. In f a c t ,  i n  a primitive-equation model T and ps 

completely determine a l l  thermodynamic variables and t h u s  the mass f i e l d ,  

since the equation of s t a t e  and the hydrostatic equation immediately yield 

p and p everywhere. 

The concrete procedure proposed by Charney e t  a l .  (1969) was t o  

start  the numerical integration of the equations w i t h  the "correct" tempera- 

tu re  data and w i t h  velocity data approximated by some other method; then, 

a t  given time in te rva ls ,  t o  replace the computed values of T 

"correct" ones, i . e . ,  t o  "update" T. However, i n  most experiments w i t h  

t h i s  method, "correct" values were taken from a "control run'', because of 

the unavailabil i ty of real data  w i t h  the required uniform dis t r ibu t ion .  

by the 

The d i f f i c u l t i e s  encountered with this technique and var ia t ions 

thereof (Morel e t  a l . ,  1971, Williamson and Kasahara, 1971, Mesinger, 1972) 

were the following: ( a )  decrease of the i n i t i a l  root-mean-square e r ro r  

i n  ( u ,  v )  t o  a non-zero asymptotic value, ( b )  achievement of t h i s  de- 

crease w i t h i n  periods not shorter than two days, and ( c )  

o r  actual increase of the rms er ror  i n  

from a control r u n  of a different GCM or  real  data. Better r e su l t s  were 

obtained recently by cer ta in  improvements of the updating technique such 

a s  local balancing (Stone _I et  a l . ,  1973, Kist ler  and McPherson, 1975) and 

slower decrease 

( u ,  v )  when u s i n g  temperature data 

-3- 



relaxation (Davies and Turner, 1975) , but the basic problems remained. 

The numerous and varied contributions in this field have been reviewed 

by Kasahara (1972), Jastrow and Halem (1973), and most recently and com- 

pletely by Bengtsson (1975). 

In view o f  the difficulties encountered by the non-synoptic tech- 

niques (updating, four-dimensional data assimilation) as well as by 

the traditional synoptic techniques (approximate-balance equations, ob- 

jective analysis) , a different approach to the initialization problem 

is attempted here. 

matical model for large-scale phenomena in the atmosphere, then there 

ought to exist initial states (u, v, p,T) 1 
tions of the model distinguished by small-amplitude IGW components; 

and a similar statement has to hold for the numerical models approximating 

the mathematical one. One should then be able to describe such initial 

states by equations derived from the model itself, without any approxima- 

tions. 

Indeed, if the primitive equations are a good mathe- 

which characterize solu- t=to 

On the other hand, it should be possible to obtain in the same con- 

text diagnostic equations which determine the horizontal velocity field 

(u, v) from the mass field and a number o f  its time derivatives. 

would seem t o  be the rigorous mathematical expression of the ideas behind 

the updating techniques. 

the questions of accuracy and o f  completeness of the initial data respec- 

tively; their combination leads to the search for equations. derived from 

those of the model, in which no time derivatives of the velocity components 

u, v appear. From these equations u, v can then be determined at any 

time t=to, given the thermodynamic variables of state T, p, p appearing 

in the equations, and as many o f  their time derivatives as required. 

time derivatives can be considered to play here the role o f  the time history 

This 

These two points o f  view are concerned with 

These 

. 
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of the variables concerned, if we think that tl has been let to tend to 

to in an updating process. 

This approach is also related to the more elaborate diagnostic equa- 

tions proposed by Fj$rtoft( 1962), Hinkelmann (1962) and Hol lmann (1966) 

among others as an improvement on the classical balance equation. The 

latter is essentially based on the assumption that d(u +v )/dt is negli- 
X Y  

gible with respect to other terms in the equation and is therefore set 

to zero'; the later, more sophisticated diagnostic equations referred 

to were all based on assumptions about the vanishing of higher derivatives 
2 of the horizontal velocity field or of its divergence, such asde(u,v)idt 

2 or d (u +v )/dt2, as well as combinations thereof and of the original 
X Y  2 

J 

assumption that u +v itself or d(u +v )/dt are zero. Hence these 

diagnostic equations were in a sense similar to the different closure 
X Y  X Y  

approximations of turbulence theory. 

We indicated already how our procedure can be thought of as the 

limiting result of updating over a time interval which tends to zero. 

In a similar vein our diagnostic equations can be viewed heuristically 

as the limit of a sequence of closure-type equations when the order of 

the derivatives assumed to be zero tends to infinity. 

The advantage of a zero-length updating interval is that the actual 

solution does not change during the updating, so that the asymptotic error 

in updating should be reduced to zero. Similarly, the advantage of 

closure at infinity should be the lack of an initialization shock, i. e., 

the presence in the time-dependent solution of only the amount of inertia- 

gravity waves actually attributable to the solutio\ frozen as it were at 

Here x ,  y are Cartesian horizontal coordinates and d/dt is horizontal 
material derivative, d/dt=a/a t+ua/ax+va/ay 

Miyakoda and Moyer (1968) proposed a dynamical implementation of such 
a synoptic condition. 

- 5- 



t he  i n i t i a l  i ns tan t ,  w i t h o u t  spur ious a m p l i f i c a t i o n  due t o  i n c o m p a t i b i l i t y  

between the measured and t h e  der ived  q u a n t i t i e s  i n  t h e  i n i t a l  s ta te .  

s ince our  d iagnost ic  equat ions a re  der ived  d i r e c t l y  from the  equations 

governing the t ime e v o l u t i o n  o f  t h e  system, w i thou t  a d d i t i o n a l  assumptions, 

t he  dynamical and the  thermodynamical q u a n t i t i e s  i n  t h e  i n i t i a l  s t a t e  a r e  

compat ib le w i th  each o ther  w i th  respect  t o  t h e i r  e v o l u t i o n  i n  t ime exac t ly ,  

and n o t  on ly  approximately so. 

Indeed, 

I n  Sect ion 2 we d e r i v e  such d iagnos t ic  equat ions f o r  the  shallow- 

f l u i d  equations l i n e a r i z e d  around a s t a t e  o f  r e s t  and we g i v e  bounds on 

the  e r r o r s  i n  the  der ived v e l o c i t y  f i e l d  i n  terms o f  t h e  e r r o r s  i n  the  

measured geopotent ia l  f i e l d .  I n  Sect ion 3 we d e r i v e  the  d iagnos t ic  

equations f o r  t he  f u l l  non l inear  s h a l l o w - f l u i d  equat ions and we analyze 

the  type o f  the equations obtained; 

which does not depend on the  space d e r i v a t i v e s  o f  u,v, i s  g iven. We 

a l so  p o i n t  out t h e  r e l a t i o n s h i p  our r e s u l t s  bear t o t h e  c l a s s i c a l  balance 

equat ion and i t s  well-known type ana lys is .  The r e s u l t s  o f  Sect ion 3 a re  

imnediate ly  app l i cab le  t o  the  p r i m i t i v e  equat ions i n  i s e n t r o p i c  coordinates,  

which are  useful  i n  shor t - term meso-scale p r e d i c t i o n .  I n  Sect ion 4 we 

show how t o  extend the  r e s u l t s  o f  Sect ion 3 t o  the  Eu ler  equat ions and t o  the  

Navier-Stokes equations, and then we address ourselves t o  the  p r i m i t i v e  

equations i n  pressure coord inates.  The type ana lys i s  o f  t h e  d iagnos t ic  

equat ions obtained i s  more d i f f i c u l t  because o f  the  equat ions being more 

complicated, bu t  main ly  because o f  three, r a t h e r  than two space va r iab les  

being involved. S t i l l  the  e l l i p t i c i t y  c o n d i t i o n  can be formulated q u i t e  

genera l ly ,  but no simple form o f  t h i s  cond i t i on ,  which does n o t  i n v o l v e  

space de r i va t i ves  o f  u, v, could be found. 

a s imple e l l i p t i c i t y  cond i t ion ,  



2. Diagnostic Equations for  the Linearized Shallow-Fluid Equation Model 

The simplest model whose solutions exhibit  behavior s imilar  to  the large- 

scale motions of the atmosphere is  the model governed by the linearized shallow- 

f l u i d  equations. 

t ions a re  

In a rotat ing Cartesian x ,y  - coordinate system these equa- 

U t  + Ox - f v  = 0 ,  

Vt + @Y + f u  = O 9  

ot + @ ( U  +v ) = 0, 
X Y  

when the l inear izat ion i s  performed around a s t a t e  of r e s t .  Here u ,  v a r e  

the velocity components in the r,y direct ions respectively and f i s  the 

Coriol is  parameter which determines the influence of the rotat ion on the so., 

lutiions. For wnvenience the geopotential Q i s  introc'uccd instead of the 

height of the f ree  surface h by 

@ = gh ,  

w i t h  

i s  

g the acceleration of gravity; the equilibrium value of the geopotential 

@ = const. 

We note t h a t  i n  t h i s  model the assumption tha t  the mass f i e l d  i s  known i s  equi- 

valent simply t o  assuming t h a t  we know @ = @ ( x , y , t ) ,  and hence @t, @tt as well. 

Our purpose w i t h  respect t o  system (1) i s  t o  o b t a i n  two equations i n  which 

do not appear, although @t,$tt may. Clearly ( I C )  i t s e l f  i s  such an Ut' Vt 

eauation, and only one additional eauation sat isfyina the reauirements has t o  

be derived. We Proceed to  do so by di f fe ren t ia t ing  (IC) w i t h  resDect t o  t ,  ( l a )  

and ( l b )  VJi th  respect t o  x,y, and obtain 

- I -  

- 



- f v x  = 0, ( 2 4  U t x  + +xx 

i- f u  = 0, 
V t Y  i- +YY Y 

( 2 4  @tt i- @(ux t  i- Vyt) = 0, 

where we assume f o r  s i m p l i c i t y  t h a t  

sec t ion .  Subs t i t u t i ng  uxt and v from (2a), (2b)  i n t o  (2c)  y i e l d s  
Y t  

f = const., as we s h a l l  throughout t h i s  

@f(v  -u ) - i- O t t  = 0 
X Y  

( 3 )  

Hence ( 3 )  together  w i t h  (IC) form a system o f  two f i r s t - o r d e r  p a r t i a l  d i f f e r e n t i a l  

equations f o r  u,v, 

i- v = -@,/@, 
ux Y 

( 4 4  

(4b) U Y - V x  = (@tt-@A@)/Qf, 

where A i s  t he  two-dimensional Laplac ian operator ,  

A+ = Q,/ +- ($yy' 

Thus (4 )  

evo lu t i on  i s  g iven by the  prognost ic  equat ions ( 1 ) .  

taneous (synopt ic )  determinat ion o f  u, v a t  t = from (4)  a c t u a l l y  requ i res  

on ly  a knowledge of @t,@tt a t  t = to, r a t h e r  than the  whole t ime h i s t o r y  of @ from 

SOme t = tl<t 

t i o n  would be a knowledge o f  a l l  the  t ime d e r i v a t i v e s  of @. 

i s  the  requi red se t  o f  d iagnos t ic  equat ions f o r  the  model whose t ime 

We n o t i c e  t h a t  the  i ns tan -  

u n t i l  t = to; the equ iva len t  o f  t he  t ime h i s t o r y  i n  t h i s  formula- 
0 

System (4)  f o r  t he  funct ions u, v i s  e l l i p t i c ,  ti.e., i t  has no r e a l  

c h a r a c t e r i s t i c s .  

t i o n s  f o r  t h e  funct ions v, U; 

t o  a Poisson equation fo r  e i t h e r  u o r  v. A well-posed problem f o r  ( 4 )  would 

In f a c t  i t  i s  j u s t  a s e t  o f  inhomogeneous Cauchy-Riemann equa- 

by c r o s s - d i f f e r e n t i a t i o n  these equat ions lead 

-8- 



be the Dirichlet problem. This means prescribing u say on a closed contour ;jD ; 

then v is determined also up to an additive constant, the value of which can 

be given by prescribing v at some point on the contour XI or in its interior, 

D.(e.g., Miranda, 1970, p. 265 ff.). Thus, within the framework of model ( l ) ,  solving 

the Dirichlet problem for system (4) solves the completeness-of-data problem. 

We turn now to discussing the accuracy problem for the model at hand. 

It is well known (Hinkelmann, 1951, Morel et al., 1971, Williamson and 

Dickinson, 1972) that system (1) has three independent plane-wave solutions, one 

corresponding to slow Rossby waves, the other two to inertia-gravity waves pro- 

pagating in opposite directions. 

velocity is zero', the Rossby mode is stationary and the IGWs have phase velocity 

In the case we treat, in which the unperturbed 

c = +(k2Q+f2)'/k, 

k = ( k  , k ) where is the wave vector and - 1 2  

2 2 2 
k = k  + k .  

1 2 

Any solution of (1) can be represented by a series expansion with respect to - k 

in these plane waves. 

Let the solution vector w = ( 4 ,  u, v )  of (1) be decomposed into its 

Rossby component w and its IGW component w' , 
- 

(5) w = w + w', 

with w stationary, that i s ,  W =O. The Rossby comDonent R satisfies 
t- 

( 1 ' )  fi = -i, fi = qx, 
Y 

{.e., it is geostrophically balanced; it also satisfies (4) with a/atrO. 

Notice that linearization around a solution with velocity ( U ,  V )  
f U  = -4 , fV = Q , 
tives o# u, v 
u, v would then appear in the equation that corresponds to ( 4 b ) ,  making the 
analysis more difficult. Similarly if f depended on y, say, a term f u/f 
would appear on the right-hand side of ( 4 b ) ,  again complicating the analysir. 

satisfying 
@$ const., would still allow us to eliminate the time deriva- 

gy cross-differentiation in (1). However second space derivatives o f  

-9- 



We have already seen tha t  u ,  v can be determined i n  a domain D by 

solving (4 )  when @,$,,$,, a r e  given in D and u ,  v a r e  given on i t s  boundary 

aD. Now we want t o  show tha t  actual ly  u ,  can be determined w i t h  prescribed 

accuracy, even when the data @,$,,@,, i n  D and u , v  on a D  do not corres- 

pond t o  a solution We s t a r t  by pointing out the re- 

lationship between geostrophicity throughout D and geostrophicity on the boun- 

dary aD. 

i n  geostrophic balance. 

Notice f i r s t  that  the most general solution of ( 4 )  which corresponds t o  a 

stationary solution o f  (1) will s a t i s fy  

I where x = $/f  i s  a known function. The  solution of ( 6 a )  is  . 

u x + v  = o  
Y 

I w i t h  $ an arbi t rary,  twice continuously different iable  function. By ( 6 b )  

Vx - u = Ax, 
Y 

+ has t o  s a t i s fy  

~ (8) A($-x) = 0 

Hence,if J, sa t i s f i e s  the @i r i ch le t  boundary condition 

$ = x on a D ,  

then 

$ = x i n  D. 

Similarly, i f  I$ sa t i s f i e s  the Neumann boundary condition 

(9) an+ = anx on a D ,  

- 10- 



an = n*V 

and n i s  t h e  u n i t  (ou te r )  normal t o  aD, V t h e  g rad ien t  operator ,  then 

(10) J, = x + const.  

But we have from (7 )  t h a t  

an+ = n+, -u) 

so t h a t  (9)  becomes 

( 9 '  1 ne (v-x,, -u-xy) 

The s imp les t  p a r t i c u l a r  i n s t a n  

i n  D. 

= o  on D. 

e o f  (9 ' )  i 

on aD; 
= -xY' = xx (9") 

i n  fac t  i t  i s  the  on ly  one. 

d i t i o n  (9)  has the  s o l u t i o n  (10); furthermore, (10) and ( 7 )  imp ly  

Indeed, we saw t h a t  equat ion (8) w i t h  boundary con- 

v = xx i n  D. u = -  
xY 9 

(11) 

Hence we conclude, by a c o n t i n u i t y  argument, t h a t  (11) imp l i es  (9" ) ,  i . e . ,  (9 )  

imp l ies  (9 " ) .  

Summing up our d iscuss ion  o f  system (6), i t  i s  c l e a r  t h a t  i t s  most general  

so lu t i on ,  whether i t  s a t i s f y  D i r i c h l e t  o r  Neumann boundary cond i t ions ,  i s  geo- 

s t roph ic  i n  D i f  and on ly  i f  i t  i s  geostrophic on 

the  decomposition (5), where i n  the  sequel w will be taken t o  stand f o r  a 

s o l u t i o n  o f  (1) corresponding t o  i n i t i a l  data obta ined by so lv ing  the  d iagnos t i c  

system ( 4 ) .  Ref ine the decomposition f o r  t h i s  w as 

aD. L e t  us now r e t u r n  t o  

( 5 l )  w = w + w1 + w2, 

W '  = w1 + w2. 

which i s  equ iva len t  t o  w r i t i n g  

Here 6 i s  t h e  geostrophic o r  Rossby component of w as before,  w1 i s  t he  

d e v i a t i o n  o f  w from w' due t o  departure from geos t roph ic i t y  i n  t he  boundary con- 

d i t i o n s  of ( 4 )  and w2 i s  t h e  dev ia t i on  due t o  depar ture from geos t roph ic i t y  i n  the  

r ight -hand s ide  of ( 4 ) .  Fur ther  on we s h a l l  make these d e f i n i t i o n s  prec ise,  and 

i n  the  process show how t o  ob ta in  w i n  ( 5 ' ) .  

-11- 



We s t a r t  by observing tha t ,  if a func t ion  P can be i d e n t i f i e d  as 

the geopotent ia l  0 i n  a s o l u t i o n  w = (b,u,v) of ( l ) ,  p =$, then p has t o  

s a t i s f y  

2 2 2  

(e.g., Courant and H i l b e r t ,  1962, pp. 14-15?. Such a func t ion  

un ique ly  determined by (12), provided i n i t i a l  da ta  

a t  

an i n f i n i t e  sum o f  p lane waves o f  t h ree  types, one Rossby mode and two i n e r t i a -  

g r a v i t y  modes. 

(12) a / a t {  a 2 / a t 2  - @ ( a  /dx +a /ay2) + f2}p = o 
p w i l l  be 

p, pt,ptt a re  p rescr ibed 

t = to. The general s o l u t i o n  o f  (12 ) , l i ke  t h a t  o f  ( l ) ,can be expressed as 

Now l e t  @,$,,@,, be given i n  D a t  t = to, w i th  @t # 0, @tt f 0 

i n  general .  Solve (12)  w i t h  

k k k  a k / a t  p = a / a t  $, k = 0,1,2, a t  t=to. 

Represent the so lu t i on  

P = @(X,Y,t) 

by i t s  plane-wave decomposition, and e l i m i n a t e  the  IGW terms by s e t t i n g  t h e i r  

c o e f f i c i e n t s  equal t o  zero. 

i t s  plane-wave expansion i s  

The new f u n c t i o n  w i t h  o n l y  Rossby components i n  

5; i n  p a r t i c u l a r  we have 

Jt = 0, $,, = 0 a t  t = to, 

since qt E 0. The phys ica l  i n t e r p r e t a t i o n  i s  t h a t  $ - $ r e s u l t s  from 

measurement e r ro rs  o f  a / a t  @ a t  t = to. I n  t h e  f i n a l  Sect ion we s h a l l  

d iscuss how t o  obta in  

k k  

@t, @tt from ac tua l  observat ions i n  an opt imal  manner. 

More genera l ly ,  we might  des i re  t o  reduce IGW terms t o  a r e a l i s t i c  s ize ,  

r a t h e r  than e l im ina te  them completely.  

coe f f i c i en ts  by s u i t a b l y  smal l  numbers, i ns tead  o f  s e t t i n g  them t o  zero. 

s h a l l  c a l l  @ modi f ied by such a f i l t e r i n g  procedure 6 ; 
case o f  $. 

Here 

It s u f f i c e s  then t o  m u l t i p l y  t h e i r  

We 

$ i s  thus a p a r t i c u l a r  

p i s  not densi ty ,  which does n o t  appear i n  t h i s  sect ion.  

-12- 
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We are  now ready t o  def ine w1 and w2 

C l e a r l y  w i s  the  s o l u t i o n  ($,u,V) o f  (1) 

dure o u t l i n e d  above and w i t h  
- 
u = -jly/f, i = 

p r e c i s e l y  and t o  compute w. 
wi th  $ obta ined by t h e  proce- 

$,If i n  D. 

Indeed, we have shown i n  the m d y s i s  o f  system (6) t h a t  i t s  so lu t ions ,  i.e., 

the so lu t i ons  o f  ( 4 )  f o r  which $t = 4)tt = 0, a re  geost rophic  i n  D i f  and o n l y  

i f  they  a re  so on aD. No t i ce  tha t  w i s  d i f f e r e n t  f rom t h e  s o l u t i o n  w, 

say, o f  (1) w i t h  i n i t i a l  data 

A 

A 

I n  f a c t  w i s  n o t  s t a t i o n a r y  and w i l l  n o t  remain geost rophic  unless 

6, = $tt = 0. 

According t o  our  h e u r i s t i c  desc r ip t i on  of w1 and o f  w2 i t  a l s o  becomes 

c l e a r  now what t h e i r  d e f i n i t i o n s  should be: 

w1 i s  the  s o l u t i o n  of ( l j  w i t h  i n i t i a l  data (O,ul,vl)~~t~to, where 

i u ,  'V I )  I t=to i s  the s o l u t i o n  o f  (6 )  w i t h  homogeneous r igh t -hand s ide  (RHS),  

1=0 , and w i th  boundary cond i t ions  

(13) u1 = u + $,/f, v 1  = v - $,/f on aD, 

u,v, being the  values a c t u a l l y  measured on aD; 

w2 i s  t he  s o l u t i o n  o f  (1) w i th  i n i t i a l  data ( ~ - ~ , u 2 , v 2 ) / t ~ t o ,  where 

: I  t=to i s  p rescr ibed and ( u2,v2) 1 t=to i s  the  s o l u t i o n  o f  ( 4 )  w i t h  4-6 

ins tead o f  $ on the RHS and w i t h  homogeneous boundary cond i t i ons  

u2=0, v2=0 on aD. 

As we saw i n  Sect ion 1, the  s i t u a t i o n  which more c l o s e l y  resembles t h a t  

o f  the atmosphere, and which we expect therefore i n  a p r im i t i ve -equa t ion  model, 

i s  t he  presence o f  small-amplitude IGWs 

we ; l ight  n o t  want t o  use w, which conta ins no IGW components a t  a l l ,  b u t  a 

s i r i t ab l y  mod i f ied  ii w i t h  r e a l i s t i c a l l y  small IGW components. It i s  i n  

ra the r  than t h e i r  t o t a l  absence. Hence 
- 
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discuss ing such a ii t h a t  t he  d e f i n i t i o n  o f  w1 and o f  w2 w i l l  prove use fu l .  

The f i r s t  step i n  ob ta in ing  G, t h a t  o f  mod i fy ing  4,  has a l ready  been 

descr ibed i n  our  discussion of equat ion (12);  i t  e s s e n t i a l l y  concerns the  reduc- 

t i o n  o f  the  s i z e  o f  

fo r  (u1 ’ V I  1 I t=t0 so t h a t ,  f o r  a g iven o 0 ,  t h e  i n e q u a l i t i e s  

w2. The second s tep  i s  t o  modi fy  t h e  boundary cond i t i ons  

- ( 1 3 ’ )  I u1 I :E 3 I v 1  I <E on aD 

ho ld  a t  t = to. Ca l l  t h e  s o l u t i o n  o f  (6 )  w i t h  xrO and boundary cond i t ions  

thus mod i f ied  (ff1,bl). 

(Courant and H i l b e r t ,  1962) the  i n e q u a l i t i e s  ( 1 3 ’ )  imp ly  

By the  maximum p r i n c i p l e  f o r  t he  Laplace equat ion 

i n  D. 

Th is  i s  a l i m i t a t i o n  on the  s i z e  o f  i;rl = (O,Gl,iil) a t  t=to, where 

0 0  
Denote by (u2, v2)  the  s o l u t i o n  o f  ( 4 )  w i t h  5-q i ns tead  o f  + on the  

RHS and w i t h  homogeneous boundary cond i t ions .  The theory o f  e l l i p t i c  PDEs 

(Miranda, 1970) provides us w i t h  c e r t a i n  bounds on (u,,v,) i n  terms o f  bounds 

imposed on @-$ a t  t=to; these so-ca l led  e r r o r  est imates are  s i m i l a r  i n  

charac ter  t o  and are p a r t l y  der ived  from the  maximum p r i n c i p l e .  

the  theory of hyperbol ic  PDEs 

s ta tes  t h a t  under s u i t a b l e  techn ica l  r e s t r i c t i o n s  there  a re  bounds on t h e  s i z e  

of Gjl and G2 a t  any t ime t i n  terms o f  t h e i r  s i z e  a t  t he  i n i t i a l  t ime 

t=to (energy i n e q u a l i t i e s ) .  Thus, u l t i m a t e l y ,  t he re  a re  bounds on Q-i a t  

any t ime t i n  terms o f  t he  bounds a t  t=to on 6-5, 6t, $,, i n  D and on 

u t+  /f, GjX/f on a ~ .  

0 0  

% 

Furthermore, 

(Courant and H i l b e r t ,  1962), app l i ed  t o  system ( l ) ,  

- -  
Y 

This  completes the  d iscuss ion o f  the  accuracy quest ion f o r  ou r  i n i t i a l i z a -  

t i o n  by compat ib le ba lanc ing i n  the  case o f  a l i n e a r i z e d  sha l l ow- f l u id  model. 
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The s o l u t i o n s  o f  t h i s  model have more fea tu res  i n  common w i t h  t h e  l a rge -  

sca le motions of t he  atmosphere than those o f  t he  model t r e a t e d  i n  t h e  prev ious 

sect ion.  The model a l s o  e x h i b i t s  some o f  t h e  behavior associated w i th  t h e  

n o n l i n e a r i t y  o f  t he  p r i m i t i v e  equations; i t  i s  considered use fu l  i n  many 

a n a l y t i c a l  and numerical i nves t i ga t i ons  which aim a t  a p p l i c a t i o n s  t o  t h e  

p r i m i t i v e  equations. The governing equat ions are:  

( l a )  Ut + uux + vuy + @x - f v  = 0 , 

O b )  V t  + uvx + vvy + @y + f u  = 0 , 

where the  n o t a t i o n  i s  t h a t  of Section 2'.  

ness, we s h a l l  l e t  f , i n  t h i s  sect ion only ,  be a f u n c t i o n  o f  y ; n o t  t o  i nc lude  

x-dependence as w e l l  r e f l e c t s  t h e  customary convent ion o f  cons ider ing  the  x-ax is  t o  

be l o c a l l y  tangent t o  a c i r c l e  o f  l a t i t u d e ,  t h e  y -ax i s  t o  a c i r c l e  o f  longi tude.  

However, f o r  the  sake o f  complete- 

Again we want t o  de r i ve  two equations f o r  t h e  v e l o c i t y  components u, v 

i n  which t h e i r  t ime d e r i v a t i v e s  do not appear, a l though t ime d e r i v a t i v e s  of t h e  

geopotent ia l  @ may be present ;  our s tanding assumption i s  t h a t  @ i s  known together  

with..its t ime d e r i v a t i v e s .  Equation ( I C )  s a t i s f i e s  these requirements, as ( 2 . 1 ~ )  

d i d  before,  and one more such eauation has t o  be found. I t was shown i n  Gh i l  (1973) 

t h a t  t he  s t r a i g h t f o r w a r d  genera l i za t ion  o f  t he  procedure used in t he  prev ious sec t i on  

t o  ob ta in  such an equat ion f a i l s .  A s l i g h t  mod i f i ca t i on  thereof ,  however, works, 

as  we s h a l l  show present ly .  The mod i f i ca t i on  i s  based on the  idea t h a t ,  i n  a 

non l inear  model, t he  ma te r ia l  d e r i v a t i v e  d / d t  i s  t he  analog o f  t he  p a r t i a l  de- 

r i v a t i v e  a / a t  i n  a l i n e a r i z e d  model. 

For no ta t i ona l  convenience we in t roduce @ = log@ , which i s  j u s t i f i e d  

'We s h a l l  s t a r t  t he  numbering o f  equat ions a f resh  i n  each sect ion,  and make 
cross-references t o  equat ions i n  a d i f f e r e n t  sec t i on  by p r e f i x i n g  the  sec t i on  
number, e. 
as system Qir1). 

t he  l i n e a r i z e d  sha l low- f lu id  equat ions w i l l  be r e f e r r e d  t o  he rea f te r  
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2 
s ince 4 i s  s t r i c t l y  p o s i t i v e ,  and the  divergence 

6 = u x + v  . 
Y 

I n  t h i s  n o t a t i o n  ( I C )  becomes 

( l c i )  6 = -  d3/3t  , 

where d / d t  i s  the two-dimensional m a t e r i a l  d e r i v a t i v e ,  

d /d t  = a / a t  -t ua/ax -t va/ay. 

D i f f e r e n t i a t i n g  ( l a )  w i t h  respec t  t o  x, ( l b )  w i t h  respect  t o  y and adding 

we ob ta in  the  f a m i l i a r  divergence equat ion,  which we w r i t e  as 

Y X  Y Y X  Y 
- db/dt  = uc + 2u v + v2 + f ( u  -v ) + f u + A$ . 

i n  (2 )  a l so  as 

(2 )  

But from ( I C ’ )  we can express db/dt  

- d6/dt  = dQt/dt + udax/dt  + Vd@ / d t  + Qxdu/dt + @ dv /d t  9 ( 3 )  Y Y 

where we use the  fac t  t h a t  t he  m a t e r i a l  d e r i v a t i v e  d / d t  obeys the  product  

r u l e  f o r  two a r b i t r a r y  sca la r  f unc t i ons  G,H, 

d(GH)/dt = HdG/dt + GdH/dt . 

Expressing du/dt ,  dv/dt  w i t h  t h e  a i d  of ( l a ) ,  ( l b ) ,  equat ion ( 3 )  becomes 

- db/dt  = 0 ( fV-+ ) + @ ( - f u -$  ) -t dQt/dt + udQx/dt + VdQ / d t  9 ( 3 ‘  ) X X Y Y Y 

which we can now combine w i t h  ( 2 )  t o  y i e l d  the  des i red  second d iagnos t i c  equat ion.  

We thus ob ta in  the  d iagnos t i c  system 

( 4 4  u x + v  Y = - Q x u - @ v -  Y @t Y 

*The @ j u s t  de f ined bears no r e l a t i o n s h i p  whatsoever t o  Q = const.  
o f  Sect ion 2. 
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for the model whose time evolution is given by the prognostic system (1). 

The right-hand side of (4) contains u,v, but only in non-differentiated 

form. In the case in which 

6 = d6/dt = 0 

system (4) is easily seen to be equivalent to the classical balance equation 

( 5 )  * - +  + )-fA$ = f + - A$ , 2(+xy xx yy Y Y  

where I) is the stream function, 

u = - i Y  Y 

Equation (5) can also be interpreted as determining the non-divergent part of 

the horizontal velocity field in a primitive-equation model, where the non- 

rotational part of the field is much smaller and can be neglected, along with 

other terms in the horizontal divergence equation of such a model (Haltiner, 

1971, p.60). 

Notice, however, that ( 5 )  fails to yield a good approximation for the 

horizontal wind field in low latitudes, where some of the assumptions made in 

deriving it (especially quasi-geostrophicity and small divergence) are not 

justified any longer. 

cumvent this problem, such as taking + to be given in the topics and solving 

( 5 )  for 4 there (Houghton and Washington, 1969). Still we believe it is a 

definite advantage of (4) 

it from (1); therefore its solution (u,v)~~,~, should provide an initial state 

that is entirely compatible (in the sense described in Section 1) with the time 

evolution of the solution ($,u,v) o f  (1) , independently of latitude. 

There have been different suggestions on how to cir- 

that no assumptions whatsoever were made in deriving 

In order to solve (4) for (u,v) we still need to determine appropriate 

boundary conditions. No general theory of we1 1 -posedness exists for such 
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3 
nonlinear f i rs t -order  systems , b u t  the known r e su l t s  fo r  1 inear systems sug- 

gest  tha t  the nature of appropriate boundary conditions depends on the type of 

the system. 

well-posed f o r  l inear e l l i p t i c  systems. 

nature of the data to  be prescribed along the boundary var ies  from one piece 

of boundary t o  another, according t o  the geometry of the domain and of the 

charac te r i s t ics  (Kreiss and Oliger, 1973, pp .  64-70). 

w i t h  systems of mixed type ( i . e . ,  systems which have d i f fe ren t  type i n  d i f fe ren t  

par ts  of the domain considered) re la t ive ly  l i t t l e  i s  known; however, some 

advances have been recently made f o r  l i nea r  and quasi-l inear systems encoun- 

tered in the f ie ld  of transonic flows (Jameson, 1975): we shall  have t o  

We saw i n  the discussion o f  ( 2 . 4 )  t h a t  the Dirichlet  problem i s  

For hyperbolic systems the number and 

Finally i n  connection 

return t o  this topic a t  a l a t e r  point of our discussion. 

T h u s  our next task i s  t o  determine the type of system ( 4 ) .  We recal l  

f i r s t  the familiar theory fo r  the s ingle  nonlinear equation of second order 
2 

( 7 )  F ( $ )  5 E($xx$yy-$xy) + NXx + 2WXy + WYy + D = 0 9 

where the coefficients A , B , C , D , E  a r e  (continuous) functions of X , Y , $ , $ ~ , $ ~  . 
If E j! 0 , then ( 7 )  i s  a Monge-Amp&e equation; i t  was most recently discussed 

in the meteorological l i t e r a t u r e  by Houghton (1968). 

instance o f  ( 7 )  w i t h  

Clearly ( 5 )  i s  a special 

E = Z ,  A = C = f ,  B = O ,  D = f $  - A @  . Y Y  (8) 

The meaning o f  charac te r i s t ics  f o r  such a nonlinear equation i s  explained 

by Courant and Hilbert (1962, pp.  418-421) i n  terms of the solvabi l i ty  of the 

Cauchy problem. Given any second-order nonlinear P D E ,  

( 7 ' )  ~ ~ x ~ Y ~ ~ ~ ~ x ~ ~ y ~ ~ x x ~ ~ x y ¶ ~ y y ~  = 0 9 

i t s  character is t ic  1 ines 

~ ( x , y )  = const. 

3 
A system like ( 4 )  i s  i n  general not equivalent to  a s ingle  second-order 

In any case, we have not found such an equivalent s ingle  equation. 

equation (Courant and Hilbert, 1962, pp. 12-14) .  
order equation i s  not  necessarily more advantageous than t o  t r e a t  a first-order 
system. 

Furthermore, to  t r e a t  a h l g h e r -  
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are given by 

Ellipticity is defined as the nonexistence of real characteristics; hence the 

condition for (7') to be elliptic is 

(10) 46' E F2 - 4F F <O . 
$X $xx qyy 

The interesting feature of (77  is that (Courant and Hilbert, 1962, pp. 495-499) 

the discriminant A' is independent o f  the highest derivatives, 

A L  (B-Eq XY 1' - (A+Eqyy) (C+E$xx) 

= B2 - AC -t DE . 

Combining (10) and (10')  yields the ellipticity condition 

for (7); by (8) this becomes 

2(A$-f $ ) + f2 > 0 , Y Y  (11') 

which is the well-known ellipticity condition for equation (5). 

this discussion of ( 7 j  by mentioning ilidt, g i v e n  tiij, one can show e s s e n t i a l  

uniqueness (viz. ,existence of at most two solutions, each with different geo- 

metrical properties: Rellich, 1932, Courant and Hilbert, 1962, pp. 324-326), 

and also existence (Pogorelov, 1964, pp. 88-92) of solutions satisfying boundary 

conditions of Dirichlet type. 

We conclude 
I - ? '  

After these remarks on (7), we are ready to proceed with the discussion 

of the first-order nonlinear system ( 4 ) ,  which we write for convenience as 

D(w ,w ) = d(x,y,w) , 
X Y  

(12a) 
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where now w = (u,v) . 
(12) can be w r i t t e n  even more conc ise l y  as 

I n  order  t o  s t r e s s  f u r t h e r  t h e  analogy w i t h  ( 7 l ) ,  

(12' 1 F(X,Y,W,WX,WY) = 0 Y 

where F = (D-d,E-e) . The g e n e r a l i z a t i o n  o f  t h e  concept o f  c h a r a c t e r i s t i c s  

t o  (12), s t a r t i n g  e i t h e r  from ( 7 ' )  o r  from q u a s i - l i n e a r  systems (Courant and 

H i l b e r t ,  1962, pp. 170-173 and 424-427) leads t o  t h e  c h a r a c t e r i s t i c  equat ion 

D E  D E  
= - d e t  (oUx EUX) Yx  + (DUy E:) y y /  

Y Y  
V vx vx 

A f t e r  some computations, (13) can be w r i t t e n  as 

(2u -f)Y; 4- 2(v -u )Y  Y - (2vx+f)Yy 2 = 0 * 
Y Y x X Y  

(13' 1 

2 For (13 ' )  n o t  t o  have r e a l  so lu t i ons  Y / Y  (or Y / Y  ) t h e  d i s c r i m i n a n t  A , 
X Y  Y X  

has t o  be negative, i . e . ,  the e l l i p t i c i t y  c o n d i t i o n  f o r  (12) i s  

But, expanding and rearranging (14), we can p u t  i t  i n t o  t h e  form 

( 1 4 ' )  A' = 2e - d2 - f2 , 

where we use 

2 2  
X Y  X Y  X Y  

- 2u v = - (u  +v )2 + ( u  +v ) . 
This  f i n a l l y  y i e l d s  t h e  e l l i p t i c i t y  c o n d i t i o n  f o r  ( 4 )  as 

2 ( 1 5 ' )  2e - d2 - f < 0, 
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which is the equivalent of (11') for (5). Indeed, the assumption 

6 = d6/dt = 0 , 

i.e., 

1 '  d = 0, e = - f u -A@ 5 e Y 

reduces (15') to the familiar ellipticity condition for the balance equation, 

exactly as it reduced 

contain any derivatives of u,v, just as (11') did not contain the second deriv- 

atives of I) . 
(4) numerically, since difference quotients of a numerical solution are in 

(4) to (5). Furthermore, condition (15') does not 

This is of particular importance when actually trying to solve 

general poor approximations to the derivatives of the exact solution, even 

though the solution of the difference equations might be a good approximation 

to the solution of the differential equations, 

In the case in which (15 ' )  is satisfied throughout the domain of interest 

we can therefore expect a boundary-value problem such as that discussed for 

(2.4) to be well-posed and to lead to at most two solutions (cf. our discussion 

of (5)). By analogy to Rellich's results (Rellich, 1932, Proposition 2) for 

(7), these two solutions would be easily distinguishable from each other and 

4 

only one of them could be physically significant under given conditions (in the 

other one cyclones and anticyclones would be interchanged). 

The major difficulty one might encounter in solving (4) is that of change 

of type. It is well known from experience with ( 5 )  that for certain geopotential 

data (11') is not satisfied, especially in regions of strong anticyclonic 

activity. 

o f  (15'), 

The same is to be expected of (4), since, in terms of a scale analysis 

el 
2 clearly dominates (e-el) - d /2 over most of the earth. 

The customary approach in solving (5) numericallv when the data indicate 

hyperbolicity has been to modify the data so that (11') is satisfied (Shuman, 1957, 

quadratic in the derivatives o f  u, v. 

-. 

Heuristically two solutions are to be expected in fact because of (4b) being 4 
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Krishnamurt i  , 1968, Paegle and Paegle, 1974). 

the  known mathematical theory o f  (7)  be app l i cab le  and t h a t  t h e  boundary-value 

problem be well-posed; fur thermore, e l l i p t i c  d i f f e r e n c e  operators  cou ld  be used 

t o  approximate ( 5 )  throughout the  domain, which was convenient and e f f i c i e n t .  

However, t he  numerical so lu t i ons  thus obta ined d i f f e r e d  from observat ions con- 

s iderab ly ,  a t  l e a s t  i n  t h e  p a r t s  o f  t he  domain where the  data had t o  be modi f ied,  

and they cou ld  no t  lead t o  o v e r - a l l  s a t i s f a c t o r y  r e s u l t s .  We suggest a d i f f e r e n t  

l i n e  o f  a t tack ,  

type * 

Th is  approach guaranteed t h a t  

mot ivated by recent  advances i n  dea l i ng  w i t h  equat ions o f  mixed 

I n  the  area o f  t ranson ic  gas dynamics equations of mixed type a r i s e  t h a t  

a re  l i n e a r  ( t h e  Tricomi equation, Bers, 1958, p. 22) o r  quas i - l i nea r ,  i . e . ,  l i n e a r  

i n  the  h ighes t  de r i va t i ves  ( t h e  Chaplygin equat ion,  id . ,  p. 14). I n  t h i s  area 

a g rea t  deal o f  progress has been made l a t e l y  i n  ob ta in ing  t h e o r e t i c a l  r e s u l t s  

( i b i d . ,  Ch. 5 and Ch. 6, Garabedian, 1964, Sec. 12.1) as w e l l  as numerical so lu -  

t i o n s  (Murman and Cole, 1971, Jameson, 1975). I n  p a r t i c u l a r ,  i t  has been shown 

t h a t  so lu t i ons  o f  the Chaplygin equat ion w i t h  i n t e r i o r  reg ions  o f  h y p e r b o l i c i t y  

( o f  supersonic f low)  e x i s t  and can be computed e f f i c i e n t l y  by u t i l i z i n g  e l l i p t i c  

d i f f e rence  operators i n  the  subsonic reg ion  and hyperbo l i c  d i f f e r e n c e  operators  

i n  the  supersonic region. This  would seem t o  encourage i n v e s t i g a t i o n s  i n  which 

the  reg ions t h a t  are hyperbo l i c  f o r  system (4)  ( o r  f o r  equat ion ( 5 )  f o r  t h a t  

mat te r )  a re  accounted fo r ,  r a t h e r  than ignored. 

phys ica l  i n t u i t i o n  would support  the  we1 1 -posedness o f  t h e  boundary-value problem 

fo r  (4), i nc lud ing  the  p o s s i b i l i t y  o f  i n t e r i o r  reg ions of h y p e r b o l i c i t y .  

h e u r i s t i c  argument r e l i e s  on the  c o m p a t i b i l i t y  o f  (4 )  w i t h  ( l ) ,  p u t t i n g  a t  l e a s t  

the well-posedness o f  the  two systems on the  same foo t ing .  

cond i t ions  under which the  in i t ia l -and-boundary  va lue problem f o r  (1) i s  wel l -posed 

are  no t  known r i go rous l y  ( they  a re  f o r  (2 .1 ) :  

I n  t h i s  regard i t  seems t h a t  

The 

Al though the  boundary 

E l v i u s  and S u n d s t r h ,  1973), 
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numerical experience and physical insight suggest t h a t  such conditions ex i s t .  

Unfortunately the same argument cannot be brought t o  bear on ( 5 ) ,  since i t  i s  

n o t  compatible w i t h  (1) i n  the sense discussed in the Introduction; neglecting 

cer ta in  physically small terms i n  an equation might have far-reaching mathematical 

consequences, as  is well-known from the theory of boundary layers and o f  other 

singular perturbation phenomena (Cole, 1968). 

We conclude this section by pointing o u t  t h a t  i t s  r e su l t s  can be applied 

t o  the primitive equations i n  isentropic coordinates (El iassen and Kleinschmidt, 

1957, pp.  26-27),  

+ u v x + v v  t M  + f u = O  , Vt Y Y  (16b) 

t U T x  + VIT + 7T(u t v  ) = 0 . 
ITt Y X Y  ( 16C 1 

where M i s  the Montgomery potential ,  

M = $ + c p T  , 

with c the specif ic  heat a t  constant pressure. Here IT i s  given by 
P 

where 8 i s  the potential temperature, 

and 

= 1000mbar, K = c /c  
P O  P V  

w i t h  cv  the specif ic  heat a t  constant volume ( i d . ,  p .  3 ) .  Indeed, (16) i s  

en t i r e ly  similar t o  (1) with @ replaced by M i n  ( l a )  and ( l b )  and by IT 

in ( IC) ;  moreover knowledge of the mass f i e ld  T ,  p ,  p implies knowledge o f  M 
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and T i n  (16). Thus , le t t ing  now 

Q = loglT , 

we obta in ,  i n  a manner e n t i r e l y  analogous t o  (4 ) ,  t h e  d iagnos t i c  system 

( 17a 1 u X Y  + v  = - Q x U - Q V -  Y @t 

u2 + 2u v + v2 + f ( u  -v  ) = - f u + f(Qxv-Q u )  
X Y X  Y Y X  Y Y (17b) 

+ dQt/dt + udQx/dt + vdQy/dt 

+ Q M )  - A M  - (@xMx y y 

t o  which t h e  same d iscuss ion  app l i es .  As we i n d i c a t e d  already, t he  study o f  

( 1 )  and hence o f  ( 4 )  has research value w i t h  regard  t o  p r o p e r t i e s  o f  the  p r i m i -  

t i v e  equations i n  na tura l  o r  i n  pressure coordinates.  

of (17) has even more immediate p r a c t i c a l  value, because o f  t he  usefulness o f  

(16) i n  meso-scale (short-range) weather p r e d i c t i o n  (Bleck, 1974). 

The study o f  (16) and hence 
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4. Diagnostic Equations fo r  the Primi tive-Equation Model 

T h i s  model is  currently believed to  be the most useful i n  describing large- 

scale  motions o f  the atmosphere and d i f fe ren t  forms thereof a re  used i n  opera- 

t ional weather forecasting, as well as i n  research-oriented general c i rculat ion 

models. I t  i s  closely related t o  the Euler equations of f l u i d  dynamics, 
du 1 - = - - p  + f v ,  ( la) d t  p X 

( l b )  d v -  - -- 1 p  - f u ,  

l P  - 9 ,  (IC) dt - - -  
P Y  

P Z  
dw - 

( I d )  2 = - p ( u  +v t w  ) ,  
X Y Z  

where d / d t  i s  now the three-dimensional material der ivat ive,  

d / d t  = a / a t  + ua/ax  + va/ay + wa/az, 

w i t h  z the vertical  coordinate and w the corresponding velocity component. 

For the sake of completeness we mention tha t  the procedure o f  the previous 

section immediately extends t o  ( l ) ,  yielding f o r  i t  the diagnostic system 

(2a)  ux  + vy + wz = 

Y 

- @ v - Q t ,  Y 

Y X  

3 3 3 
+ 2(u v + vzwy + wxuz) + f ( u y  - v x )  ( 2 b j  u; + v + wz 

= f(@,v - ayu) 

- pP-g@,Y 

+ dGt/dt + ud@,/dt + vd@ / d t  + wdaz/dt Y 
1 

( 2 ~ )  e x u  + e v + e z w  = -et. Y 

Here A i s  the three-dimensional Laplacian, 
A = a2/a, 2 2 2 2 2  +a  /ay + a  /az , 

and 
a) = log p ,  

while f , g -  are  taken as constants for  simplicity.  For system (2) t o  be 
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useful i n  determining ( u , v , w )  two thermodynamic variables,  T and p ,  

say, have t o  be observable throughout the domain of  i n t e re s t .  

so unreasonable t o  require: 

sca la r ,  p, rather t h a n  the three velocity components u ,v ,w .  Hence ( 2 )  

could prove useful i n  the study of cer ta in  small-scale atmospheric phenomena 

where ver t ical  accelerations are not negligible,  as well as  i n  other areas 

of f lu id  dynamics where system (1) a r i se s  and where temperature and pressure 

measurements are  easier  t o  make than velocity measurements. 

This i s  not 

i t  i s  s t i l l  eas ie r  t o  measure one additional 

The same result  h o l d s  fo r  the fu l l  Navier-Stokes equations, only tha t  

the equation corresponding t o  (2c) will contain derivatives of the velocity 

components, instead of being purely algebraic i n  them (s ince i n  the equation 

corresponding t o  ( l e )  there i s  an energy diss ipat ion term depending on velo- 

c i t y  der ivat ives) ;  a lso the equation corresponding to  ( 2 b )  wi l l  be of order 

higher t h a n  f i r s t  (second or t h i r d  according to  whether the flow studied i s  

incompressible or compressible), b u t  l inear  i n  the highest derivatives.  

we have no imnediate in t e re s t  i n  these equations, we turn our a t tent ion now 

t o  the primi tive-equation model. 

For simplicity we shall  consider the primitive equations i n  pressure 

Since 

coordinates and w i t h o u t  dissipation or heating terms, 

(3a)  ux + v,, + u p  = 0 

(3b )  U t  + uuX + V U  + o u  - f v  = - $ x y  Y P 

Y P 

P 

$Y , ( 3 4  V t  + u v x  + v v  + w v  + f u  = - 

(3d) e t  + u0, + vBY + w e  = 0, 

where e i s  potential temperature, @ i s  the geopotential of an isobaric 

surface, 

4 = gz(x ,y ,p) ,  p = const . ,  
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and w = dp /d t  i s  the ver t ical  veioc’ity i n  tnis coordinate system. The 

r e s a l t s  below obtain also f o r ’ t h e  equations i n  natural z-coordinates o r  i n  

a-coordinates. 

o r  depend on the velocity components and their spa t ia l  der ivat ives  i n  a known 

way, the same comnents as f o r  the Navier-Stokes equations apply: 

i n g  diagnostic equations will be more complicated than the ones below and possi- 

bly of higher order, b u t  instantaneous, synoptic determination of the velocity 

f i e ld  from the mass f i e l d  is  s t i l l  possible. 

If heating and dissipation a re  present, and are  either known 

the correspond- 

We have now three velocity components, u , v a ,  t o  determine and need there- 

fore three diagnostic equations. 

and we have t o  derive a t h i r d  one. The basic idea will be again to  s t a r t  from 

a divergence equation and eliminate the material derivative of the divergence 

using the continuity equation. 

case of system ( 3 )  than i n  the case of system (1) because of the asymmetric 

way i n  which w appears i n  ( 3 ) .  

Obviously (3a) and (3d) are  two such equations, 

The procedure i s  l ess  straightforward i n  t h e  

We introduce the horizontal divergence 6 ,  

6 = u  + v  x Y’ 

and the material derivative d / d t  corresponding t o  this coordinate system, 

d / d t  = a / a t  + w a x  t va/ay + w a / a p .  

In  t h i s  notation the divergence equation obtained from the momentum equations 

(3b); (3c)  i s  

(4) = f(V - U  ) - A + .  
X Y  

2 
Y X  Y d 6 / d t  t u: + 2u v + v + u x u p  + w Y v p  

From the continuity equation ( 3 a ) ,  written as 

P’ 
( s a ’ )  . 6 = w  

we have immediately 

(5) -dd /d t  = dwp/dt .  
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We s h a l l  use t h e  energy equat ion (3d) t o  e l i m i n a t e  w, 

w = - (eXu t e v t et)/ep = - 8 ' ~  - 8 ' ' ~  - e''', 
(3d' ) Y 
w i t h  t h e  obvious i d e n t i f i c a t i o n s  

e '  = e / e  e" = e /e 0"' = e /e 
x P '  Y P'  t P' 

Thus, from ( 5 )  and ( 3 d ' ) ,  we have 

db/dt = (d/dt)(O'up+e"v te 'u " ' ' v+~ ' ' '  ) P P  P P ( 5 '  1 

= e 'du  / d t  t e"dvp/dt + ( d e ' / d t )  up + (de" /d t )vp  
P 

t e 'du /d t  t B"dv/dt t ud0 ' /d t  + vde;/dt i- de;'/dt. P P P 

We can a l so  w r i t e  w X  and w 

Furthermore, equations (3b)  and 3c) y i e l d  

appearing i n  ( 4 )  w i t h  t h e  a i d  of ( 3 d ' ) .  
Y 

du / d t  = ( f v -$x )p  - uXup - uYvp - upup 
P 

= -u v - u v i- f v  - $xp, 

P Y P  P X  Y P - v p w P  

P X  X P  p @YP3 

Y P  P Y  P 

dv / d t  = ( - f u -$  ) - u v - v v 

= - u v  - u v  - f u  - 

where we used (3a) t o  express 

i n t o  ( 4 )  produces the  miss ing  d iagnos t i c  equation. 

S u b s t i t u t i n g  t h i s  i n t o  ( 5 ' )  and the  r e s u l t  
P '  

No t i ce  t h a t  we use (3d)  t o  e l i m i n a t e  the  space d e r i v a t i v e s  of w ,  so t h a t  

we a re  l e f t  w i t h  a d iagnos t i c  system o f  two equations f o r  t he  two h o r i z o n t a l  

v e l o c i t y  components u ,v, 

(6a) 

(W 

- FJ'U t v - 0 ' 1 ~  = e ' u  + ellv t 0''' , 
uX P Y  P P  P P 

uX Y X  X P  Y P  P Y  

- e y u  v +2u v +v v ) 

* -t 2u v + v; - e ' ( u  u +2u v t u  v ) 

X P  P X  P Y  

+ f ( u  -v )+("-0")v + e; - e;;' - fO")up 

t { (e" - fJ ' )u  t 0; -e''' + fO')vp 

Y X  Y X  

X Y  Y 
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A f t e r  s o l v i n g  (6 )  f o r  u,v, we can o b t a i n  w immediately e i t h e r  f rom (3a) 

o r  from (3d). Observe a l s o  t h a t  i n  t h e  case i n  which a l l  p d e r i v a t i v e s  are  

zero, 
- 

a/ap = 0, system (6)  reduces t o  t h e  c l a s s i c a l  balance equat ion (3.5). 

To so lve  (6), however, we need t o  know what a we1 1-posed problem f o r  i t  

i s ,  i.e., which boundary condi t ions w i l l  ensure t h a t  t h e  s o l u t i o n  e x i s t s ,  i s  

unique and depends cont inuously  on t h e  data (mass- f ie ld  data and boundary data).  

The f i r s t  s tep i n  t h a t  d i r e c t i o n  i s  t o  determine t h e  type o f  system (6) .  

i s  more d i f f i c u l t  than f o r  system (3.4) f o r  two reasons: 

one i s  t h a t  (6) i s  more complicated, viz.,more terms appear i n  t h e  equations; 

t h i s  i s  a c t u a l l y  t h e  l e s s  important one. The second reason i s  t h a t ,  a l though 

( 6 )  has o n l y  two dependent var iab les,  u 

one a d d i t i o n a l  independent var iab le,  p. It i s  w e l l  known t h a t  t h e  ana lys is  

o f  p a r t i a l  d i f f e r e n t i a l  equations i n  more than two var iab les  i s  cons iderably  

harder (Courant and H i l b e r t ,  1962, p.551 ff., Garabedian, 1964, p. 175 f f . ) ,  

s ince the  geometric concepts involved.become more complex. 

Th is  

t h e  f i r s t  and obvious 

and v, the  same as (3.4), i t  has 

I I : & L .  - l : . .h& - - A  - L . .  :-..- C--.--.n; fhc nn+>f;nn of s e c t i s f i  3 r e p r i t e  ( 5 )  w ILI I  6 3 1  I Y I I L  aiiu uuv 1uu3 Lltal tyc I I vi11 CI:L I I V C U C I W I I  

as 

( 7 )  F(x,y,p,w,w w w ) = 0. 
x '  Y '  P 

The equat ion t h a t  g ives t h e  c h a r a c t e r i s t i c  surfaces 

\y(x,y,p) = const. 

o f  ( 7 )  w i l l  then be 

0 = d e t  ((aF/awx) Y, + (aF/awy) yy + (aF/awp)Yp}. 

In t roduc ing  t h e  normal vec tor  5 o f  a c h a r a c t e r i s t i c  sur face 

5 = (51'52'53) = ('yx.yy,'yp), 
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t he  c h a r a c t e r i s t i c  equat ion becomes 

D 5 ,  + D 52 + Dv 5, 

51 + Ev 5 2  + Ev 53 

V V 
D 5, + Du E *  + Du 53 

EU 51 + Eu 52 + Eu 53 
X Y P vX Y P 

X Y P X Y 
U 

E 
(8 )  0 = det 

The expression i n  (8) represents  a quadra t ic  form i n  the  th ree  components 

o f  E ,  i n  t he  same way t h a t  t he  expression i n  (3.13) was a quadra t i c  form i n  

the  two va r iab les  Yx, ; we can w r i t e  t h i s  form as 
yY 

Since we want t o  consider o n l y  r e a l  values o f  5 ,  t h e  c o e f f i c i e n t  m a t r i x  

A = (Aij) o f  t h i s  form can be taken, w i thou t  l o s s  o f  genera l i t y ,  t o  be sym- 

me t r i c ,  

The c o e f f i c i e n t s  Aij 

i n  (6), as w e l l  as o f  u, v and o f  t h e i r  d e r i v a t i v e s .  

a re  c e r t a i n  e x p l i c i t  f unc t i ons  of the  known q u a n t i t i e s  

The necessary and s u f f i c i e n t  c o n d i t i o n  f o r  system (6) t o  be e l l i p t i c  i s  

t h a t  the  quadra t ic  form ( 9 )  be d e f i n i t e  (Courant and H i l b e r t ,  1962, pp. 552-556 

and pp. 579-581), i .e . ,  t h a t  Q(5 )  be d i f f e r e n t  f rom zero f o r  non-zero 

system i s  hyperbol ic  iff ( i f  and o n l y  i f )  t he re  e x i s t s  a non-s ingular  l i n e a r  

t ransformat ion,  t h a t  i s ,  a t rans format ion  g iven by a ma t r i x  ( B . . )  w i t h  non- 

vanish ing determinant, which, when app l i ed  t o  5 ,  

5. The 

1 J  

3 
s i  = C B. .n j=1 1J j ’  

w i l l  b r i n g  Q t o  the form 

I n  terms o f  such a t ransformat ion,  (6) i s  e l l i p t i c  i f f  a non-s ingular  m a t r i x  

(Bij) e x i s t s  fo r  which 
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i n  two variables , c3~0 , t i ie only other  possibil Sty, when the form 

Q ( 6 )  = Q(C1,62) 

being once degenerate, i . e . ,  reducible t o  

i s  rea l ly  quadratic (rather than l i nea r ) ,  consists i n  i t  

2 Q(Q) = n1* 

A t  a point a t  which this were the case, system (3 .4 )  would be parabolic; such 

points, i f  they existed,  would i n  general form the t rans i t ion  l ine  between a 

region of e l l i p t i c i t y  and one of hyperbolicity: 

(the sonic l ine i n  transonic gas dynamics). 

the so-called parabolic line 

In three variables,  however, 

there ex i s t  other cases i n  which ( 6 )  i s  neither e l l i p t i c  nor hyperbolic. In 

par t icular  one m i g h t  have points a t  which ( B i j )  exists so t h a t  Q(S) takes 

either one of the forms 

only i n  the second case can (6)  be called parabolic. 

m i g h t  have f in i te  volume i n  three-space, ra ther  than reducing t o  a two-dimen- 

Furthermore such regions 

sional surface which separates a region o f  e l l i p t i c i t y  from one of hyperbolicity. 

Using a different terminology, system (6 )  is  degenerate i f f  the matrix A 

has a t  l ea s t  one zero eigenvalue, i t  i s  e l l i p t i c  i f f  a l l  the eigenvalues of 

A are  s t r i c t l y  o f  one s i g n  ( s t r i c t l y  posit ive,  say) and i t  is  hyperbolic i f f  

the eigenvalues o f  A are  non-zero, b u t  have d i f fe ren t  signs (one negative 

and two positive, say).  The eigenvalues X of A are  the roots of i t s  

charac te r i s t ic  polynomial, 

P ( A )  = det(A-AI), 

where I i s  the 3x3 ident i ty  matrix. Hence system (6)  will  be non-degenerate 

iff matrix A i s  non-singular, i . e . ,  i f f  the zeroth order term of P ( X )  i s  non-zero, 

det A f 0 .  

All 
2 System (6)  will be e l l i p t i c  i f f  and AllAZ2 - A12 have the same s i g n  as 

det  A (Hildebrand, 1965, pp. 50 - 52) .  

(6) a re  

T h u s  the e l l i p t i c i t y  conditions f o r  
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2 We have n o t  succeeded i n  expressing tile quant i t ies  All, A 11 A 22 - A12 
and det  A i n  terms of the r ight -hand sides of (6a) , (6b)  o r  i n  any other way t h a t  

does not depend on the derivatives of u , v .  However, given a f ini te-difference 

approximation t o  these derivatives,  i t  i s  a straightforward, a l b e i t  lengthy, 

computation t o  evaluate these quant i t ies  from the expressions fo r  (A. . )  

obtained by expanding (8). 
1 J  

We see tha t  the s i tua t ion  i s  more complicated for  system (3) t h a n  i t  was 

for (3.1). 

t i o n  by compatible balancing i n  a primitive-equation model. 

i n  the implementation of the proposed procedure remain open: 

discuss some of them i n  the f i n a l  section. 

S t i l l  system (6 )  represents a def in i te  poss ib i l i ty  for i n i t i a l i z a -  

Numerous problems 

we shall  b r ie f ly  
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5. Concluding Remarks 

We have shown that the horizontal wind field is synoptically determined 

by the mass field and its first two time derivatives, at least in a number of 

mathematical models describing the behavior of the atmosphere. The diagnostic 

equations for the velocity field were in each case derived from the prognostic 

equations of the model by purely mathematical manipulations; we did not make 

any additional physical assumptions which would involve the omissjon of certain 

terms in the equations. 

and with the wind field given by the corresponding diagnostic equations, should 

generate time-dependent solutions of the model under consideration in which the 

Therefore, initiai states with prescribed mass field, 

. 

features representing meteorologically significant phenomena predominate. 

From the theoretical viewpoint, our results seem to explain the partial 

success of updating as well as the difficulties encountered. According to the . 

analysis presented here, winds =determined by the mass field and by some 

information contained in its past history; on the other hand, the relevant in- 

formation is not exploited in an optimal way by the updating techniques. 

feel that the systematic procedure for initialization by compatible balancing 

We 

- 4  a =  n::+?inar( v u * ,  , , IC ."  hnrn ' 1 L . 1  L i s  29 j n t e r e s t j n g  a ! t e r c a t i \ i e  b o t h  t o  non-synopt ic jnitjgliza- 

tion and to more traditional synoptic techniques. 

Two kinds of difficulties are to be expected in the practical implementa- 

tion of this approach to initialization: (a) observational, and (b) numerical. 

(a) The observational difficulties have mainly to do with the fact that 

synoptic coverage of the mass field, though considerably better than that for 

the wind field, is still not complete. Satellite coverage has proved helpful, 

but some problems in the processing of satellite data have proved to be more 

serious than expected (Bengtsson, 1975). Part of these problems are also of a 

mathematical nature, having to do with the ill-posedness of a certain integral 
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equation; i t  i s  hoped t h a t  known techniques fo r  dea l i ng  w i t h  such problems 

cou ld  lead t o  the  computation o f  b e t t e r  v e r t i c a l  temperature d i s t r i b u t i o n s  

f rom s a t e l l i t e  data. 

(b )  The numerical d i f f i c u l t i e s  t o  be expected i n  t h i s  i n i t i a l i z a t i o n  

approach have t o  do b a s i c a l l y  w i t h  the  discrepancy between the  s o l u t i o n s  o f  

numerical models and those o f  the  mathematical models they  approximate. The 

wind f i e l d  g iven by the  s o l u t i o n  o f  the  proposed d iagnos t i c  d i f f e r e n t i a l  

equat ions i s  compatible w i t h  the  prescr ibed mass f i e l d  w i t h  respect  t o  the  

d i f f e r e n t i a l  equations o f  t h e  prognost ic  model; bu t  i n  p r a c t i c e  one can so lve 

o n l y  a se t  o f  d i f f e rence  equat ions which approximate t h e  d iagnos t ic  equat ions 

we der ived.  The problem then a r i s e s  of ob ta in ing  d iagnos t ic  d i f f e r e n c e  equa- 

t i o n s  d i r e c t l y  f r o m  the  prognost ic  d i f f e r e n c e  equat ions o f  a g iven numerical 

model. Th is  task  i s  f a c i l i t a t e d  by the  f a c t  t h a t ,  i n  each model we discussed, 

one of the  equations o f  t he  d iagnos t ic  system was a c t u a l l y  i d e n t i c a l  t o  one of 

the  equations o f  the prognost ic  system; t a k i n g  t h e  same d i s c r e t i z e d  vers ion  o f  

t h i s  d iagnos t ic  equation f o r  determining the  wind f i e l d  as i s  used i n  the  t ime 

i n t e g r a t i o n  o f  the prognost ic  numerical model w i l l  so lve  a t  l e a s t  p a r t  o f  t he  

problem. The second d i s c r e t e  equat ion may then a l s o  be obta ined more r e a d i l y  

i n  a compat ib le way. 

Th is  approach t o  t he  numerical d i f f i c u l t i e s  a l s o  suggests a s o l u t i o n  t o  

the  problem mentioned i n  Sect ion 2 o f  c a l c u l a t i n g  the  requ i red  t ime d e r i v a t i v e s  

o f  t he  mass f i e l d  from d i s c r e t e  (as opposed t o  cont inuous)  observat ions.  Since 

even tua l l y  the  i n i t i a l i z a t i o n  w i l l  be done f o r  a d i s c r e t e  model, i t  i s  na tu ra l  

t o  take  t ime d i f fe rences  ins tead o f  t i m e  d e r i v a t i v e s .  It i s  t r u e  t h a t  the  t ime 

i n t e r v a l s  used i n  present e x p l i c i t  numerical models a r e  o f  t h e  order  of minutes, 

w h i l e  synopt ic  maps a re  a v a i l a b l e  a t  t ime i n t e r v a l s  o f  t h e  order  of hours 

(Bengtsson, 1975). On the  o the r  hand, we a r e  i n t e r e s t e d  i n  mass- f ie ld  t ime- 

d i f ference in fo rmat ion  which i s  f i l t e r e d  so as t o  make t h e  me teo ro log i ca l l y  
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. 

significant phenomena dominant in the initial state obtained with the help of 

this information. Therefore it is desirable for our purposes to take time 

differences based on mass-field maps processed by standard synoptic procedures 

from raw data, and available at time intervals characteristic o f  changes in 

the meteorologically significant large-scale motions of the atmosphere, rather 

than at time intervals characteristic of changes in inertia-gravity wave motions. 

There i s  certainly a need for investigations on optimum time intervals and 

differencing methods for the time derivatives required by the initialization 

method presented here. 

The major problem, however, in implementing this method is that of con- 

structing solutions of a nonlinear diagnostic system of mixed type, and of 

devising numerical schemes for doing so which will be sufficiently efficient in. 

order to make the method practically useful. We hope to be able soon to report 

on progress in this direction. 
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